References

Brammer, L., McCann, M. C., Bullock, R. M., McMullan, R. K. \& Sherwood, P. (1992). Organometallics, 11, 2339-2341.
Brammer, L. \& Zhao, D. (1994). Organometallics, 13, 1545-1 547.
Brammer, L., Zhao, D. \& Ladipo, F. T. (1994). J. Am. Chem. Soc. Submitted.
Brenčič, J. V., Čeh, B. \& Leban, I. (1979). Acta Cryst. B35, 3028-3030.
Brenčič, J. V., Čeh, B. \& Leban, I. (1986). Z. Anorg. Allg. Chem. 538, 212-220.
Calderazzo, F., Fachinetti, F., Marchetti, F. \& Zanazzi, P. F. (1981). J. Chem. Soc. Chem. Commun. pp. 181-183.

Declercq, J.-P. \& van Meerssche, M. (1984). Bull. Soc. Chim. Belg. 93, 235-236.
Doi, M., Ishida, T. \& Inoue, M. (1990). Acta Cryst. C46, 676-678.
Drew, M. G. B., McKee, V. \& Nelson, S. M. (1978). J. Chem. Soc. Dalton Trans. pp. 80-84.
Minshall, P. C. \& Sheldrick, G. M. (1978). Acta Cryst. B34, 1378-1380.
Nishino, H. \& Kochi, J. K. (1990). Inorg. Chim. Acta, 174, 93-102.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Villarreal-Salinas, B. E. \& Schlemper, E. O. (1979). J. Cryst. Mol. Struct. 8, 217-237.
White, J. M., Alder, R. W. \& Orpen, A. G. (1988a). Acta Cryst. C44, 664-666.
White, J. M., Alder, R. W. \& Orpen, A. G. (1988b). Acta Cryst. C44, 1467-1469.

Acta Cryst. (1995). C51, 48-50
[N, N-Bis(2-aminoethyl)- N^{\prime}-(2-amino-ethylidene)ethane-1,2-diamine]chlorocobalt(III) Perchlorate

Mary Giannos, Gary D. Fallon and Leone Spiccia*

Department of Chemistry, Monash University, Clayton, Victoria 3168, Australia
(Received 13 December 1993; accepted 31 May 1994)

Abstract

The structure of the title compound, $\left[\mathrm{CoCl}\left(\mathrm{C}_{8} \mathrm{H}_{21}{ }^{-}\right.\right.$ $\left.\left.\mathrm{N}_{5}\right)\right] 2 \mathrm{ClO}_{4}$, consists of octahedral $[\mathrm{Co}(\text { trenenim }) \mathrm{Cl}]^{2+}$ cations [where trenenim $=N, N$-bis(2-aminoethyl- N^{\prime} -(2-aminoethylidene)ethane-1,2-diamine] with two perchlorate anions acting as counterions. The bond lengths and angles about $\mathrm{N}(2)$ and $\mathrm{C}(3)$ provide clear evidence for the presence of an imine bond. A short $\mathrm{Co}-\mathrm{N}(2)$ distance of 1.863 (2) \AA reflects the fact that this N atom is an imine N atom. The corresponding $\mathrm{Co}-\mathrm{N}$ distance in the related saturated system $[\mathrm{Co}(\text { trenen }) \mathrm{Cl}]^{2+}\left[\right.$ where trenen $=N, N, N^{\prime}$-tris-

(2-aminoethyl)ethane-1,2-diamine] is also substantially shorter than the others. In both cases, the secondary N atom on the appended arm has a stronger affinity for $\mathrm{Co}^{\mathrm{III}}$ than the primary and tertiary N atoms within the ligand framework.

Comment

The coordination chemistry of pentadentate ligands has attracted our attention because these ligands can be applied in the synthesis of binuclear complexes linked by a single bridging group. We have recently reported the synthesis and X-ray structure of $[\mathrm{Co}($ trenen $) \mathrm{Cl}] \mathrm{Cl}\left(\mathrm{ClO}_{4}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (Gatehouse, Martin, McLachlan, Platts \& Spiccia, 1992) and the peroxobridged complex $\left[(\right.$ trenen $) \mathrm{CoO}_{2} \mathrm{Co}($ trenen $\left.)\right]\left(\mathrm{ClO}_{4}\right)_{4}$ (Gatehouse, McLachlan, Martin, Martin \& Spiccia, 1991), where trenen is the pentadentate ligand, N, N, N^{\prime}-tris(2-aminoethyl)ethane-1,2-diamine (1). In these complexes, the disposition of the ligand is such that the Cl and O atoms from the peroxide bridge are trans to the secondary N atom. A further feature of these complexes is the short $\mathrm{Co}-\mathrm{N}$ (secondary) distance compared with the other $\mathrm{Co}-\mathrm{N}$ distances. We report here the X -ray structure of $[\mathrm{Co}$ (trenenim)$\mathrm{Cl}]\left(\mathrm{ClO}_{4}\right)_{2}$, where trenenim is N, N-bis(2-aminoethyl)-N^{\prime}-(2-aminoethylidene)ethane-1,2-diamine (2). This structure is of interest because the complex is the precursor to $[\mathrm{Co}(\text { trenen }) \mathrm{Cl}]^{2+}$ (Gatehouse et al., 1992) and $\left[(\text { trenen }) \mathrm{CoO}_{2} \mathrm{Co}(\text { trenen })\right]^{4+}$ (Gatehouse et al., 1991).

(2) trenenim

Fig. 1 shows the structure of the complex cation $\left[\mathrm{Co}(\right.$ trenenim $) \mathrm{Cl}^{2+}$ and the perchlorate counter ions. The primary coordination sphere of the Co^{111} atom comprises five N atoms from the trenenim ligand and one Cl atom. As in the previously reported peroxo and chloro complexes of trenen (Gatehouse et al.. 1991; Gatehouse et al., 1992), the chloro ligand is trans to the secondary N atom because the ligand
is generated by template synthesis around the inert $\mathrm{Co}^{\text {III }}$. The presence of the imine moiety is clear from the short $\mathrm{N}(2)-\mathrm{C}(3)$ distance of 1.268 (5) \AA, which is much shorter than any other $\mathrm{C}-\mathrm{N}$ distance ($>1.45 \AA$). The $\mathrm{Co}-\mathrm{N}(2)$ distance of 1.863 (2) \AA is also much shorter than the other $\mathrm{Co}-\mathrm{N}$ distances [average 1.964 (8) \AA]. In addition, the three bond angles about the imine N atom, $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(2)$, $\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$, are all close to 120° (and total 360°) as is the $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ angle. This confirms the planarity of the imine moiety. The bite angle of $83.1(1)^{\circ}$ in the fivemembered chelate ring containing the imine is smaller than those of all the other chelate rings [average $86.4(5)^{\circ}$]; this is a reflection of the rigidity introduced by the imine bond. It is interesting to note that the bite angles for complexes of the fully saturated derivative trenen are remarkably constant: $86.0(9)^{\circ}$ for $\left[(\text { trenen }) \mathrm{CoO}_{2} \mathrm{Co} \text { (trenen) }\right]^{4+}$ (Gatehouse et al., 1991), 86.2 (8) ${ }^{\circ}$ for $[\mathrm{Co}(\text { trenen }) \mathrm{Cl}]^{2+}$ (Gatehouse et al., 1992) and $86(1)^{\circ}$ for $\left[\mathrm{Co}(\text { trenen }) \mathrm{N}_{3}\right]^{2+}$ (Maxwell, 1971).

The $\mathrm{Co}-\mathrm{N}(2)$ distance is substantially shorter than the mean Co-imine bond distance of 1.916 (9) \AA in reported cobalt(III) complexes (Orpen, Brammer, Allen, Kennard, Watson \& Taylor, 1989). For example, the Co-imine bond distance in the (α-amino- γ-amino- α-methylvaleric acid)triamminecobalt(III) ion is $1.943 \AA$ (Tucker, 1979). Thus, the imine N atom is more strongly attached to the $\mathrm{Co}^{11 \mathrm{II}}$ centre than might have been expected on the basis of previously reported $\mathrm{Co}-$-imine distances. In fact, for $[\mathrm{Co}(\text { trenen }) \mathrm{Cl}]^{2+}$ (Gatehouse et al., 1992) and $\left[\text { (trenen) } \mathrm{CoO}_{2} \mathrm{Co} \text { (trenen) }\right]^{4+}$ (Gatehouse et al., 1991), the $\mathrm{Co}-\mathrm{N}$ (secondary) bond distances are significantly shorter than other $\mathrm{Co}-\mathrm{N}$ distances. Thus, the short $\mathrm{Co}-\mathrm{N}$ (secondary) bond is either a feature of this pentadentate ligand system or, alternatively, is related to the fact that weak-field ligands occupy the positions trans to this N atom.

Fig. 1. Structure of $[\mathrm{Co}($ trenenim $) \mathrm{Cl}]\left(\mathrm{ClO}_{4}\right)$, showing the stereochemistry of the $[\mathrm{Co}(\text { trenenim }) \mathrm{Cl}]^{2}$ cation. Displacement ellipsoids are shown at the 40% probability level.

Experimental

[$\mathrm{Co}($ tren $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl}$ and $\left[\mathrm{Co}(\right.$ (tren $)\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{Cl}\right]-$ $\mathrm{Cl}\left(\mathrm{ClO}_{4}\right)$ and aqueous solutions containing a mixture of $[\mathrm{Co}-$ (trenenim) $\left.\mathrm{OH}_{2}\right]^{3+}$ and $[\mathrm{Co}(\text { (renenim }) \mathrm{Cl}]^{2+}$ were all prepared by literature methods (Golding, Harrowfield \& Sargeson, 1974; Buckingham, Cresswell \& Sargeson, 1975; Engelhardt et al., 1988). Cation-exchange chromatography of the mixture of trenenim complexes gave two major fractions on elution with dilute HCl . Evaporation of these fractions gave a red complex which was analysed as $[\mathrm{Co}($ (trenenim $) \mathrm{Cl}] \mathrm{Cl}_{2}$ (yield 10%) and an orange complex which was analysed as $\left[\mathrm{Co}(\right.$ trenenim $\left.) \mathrm{OH}_{2}\right] \mathrm{Cl}\left(\mathrm{ClO}_{4}\right)_{2}$ (yield 50%). The elemental analyses, molar conductivity and visible spectra were in agreement with literature reports (Gatehouse et al., 1991).

In order to obtain crystalline salts of [Co(trenenim)CI]$\left(\mathrm{ClO}_{4}\right)_{2}$, the aquo complex $\left[\mathrm{Co}(\right.$ trenenim $\left.) \mathrm{OH}_{2}\right] \mathrm{Cl}\left(\mathrm{ClO}_{4}\right)_{2}$ was dissolved in $2 M \mathrm{HCl}$ and the solution evaporated to dryness under vacuum leaving a residue which was recrystallized from a minimum amount of hot water. Small red-orange crystals suitable for X -ray diffraction studies were grown by slow evaporation of an aqueous solution of the complex. Density D_{m} was measured by flotation in $\mathrm{CCl}_{4} / \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$.

Crystal data

$\left[\mathrm{CoCl}\left(\mathrm{C}_{8} \mathrm{H}_{21} \mathrm{~N}_{5}\right)\right] 2 \mathrm{ClO}_{4}$
$M_{r}=480.6$
Monoclinic
$P 2_{1} / c$
$a=12.615$ (3) \AA
$b=11.408$ (2) \AA
$c=11.990$ (3) \AA
$\beta=98.78(1)^{\circ}$
$V=1705.2(7) \AA^{3}$
$Z=4$
$D_{x}=1.87 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.88$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Philips PW1100 diffractometer
ω scans
Absorption correction:
analytical (SHELX;
Sheldrick, 1976)
$T_{\text {min }}=0.694, T_{\text {max }}=$ 0.767

5408 measured reflections
4965 independent reflections

Refinement

Refinement on F
$R=0.038$
$w R=0.038$
$S=1.652$
3104 reflections
227 parameters
Only H-atom U 's refined
$w=1 / \sigma^{2}\left(F_{o}\right)$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 24 reflections
$\theta=10-18^{\circ}$
$\mu=1.53 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prismatic
$0.40 \times 0.26 \times 0.22 \mathrm{~mm}$
Red-orange

3104 observed reflections
$\left[\left|F_{o}\right| \geq 6 \sigma\left(\left|F_{o}\right|\right)\right]$
$R_{\text {int }}=0.0281$
$\theta_{\text {max }}=30^{\circ}$
$h=-17 \rightarrow 17$
$k=0 \rightarrow 16$
$l=0 \rightarrow 16$
3 standard reflections
frequency: 240 min
intensity variation: none
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.88 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Co	0.28216 (3)	0.03943 (3)	0.31612 (3)	0.0212 (1)
$\mathrm{Cl}(1)$	0.43823 (7)	0.12910 (8)	0.38924 (7)	0.0386 (3)
$\mathrm{Cl}(2)$	0.26654 (6)	0.47159 (7)	0.22988 (7)	0.0334 (2)
$\mathrm{Cl}(3)$	-0.02847 (7)	0.20454 (8)	0.10086 (7)	0.0369 (2)
C(1)	0.2486 (3)	-0.1447 (3)	0.1530 (3)	0.0385 (11)
C(2)	0.1396 (3)	-0.0915 (3)	0.1589 (3)	0.0405 (12)
C(3)	0.0691 (3)	0.0035 (3)	0.3113 (3)	0.0323 (10)
C(4)	0.0931 (3)	0.0835 (3)	0.4097 (3)	0.0395 (12)
C(5)	0.3956 (3)	-0.0031 (4)	0.1401 (3)	0.0452 (14)
C(6)	0.3216 (3)	0.0956 (4)	0.0939 (3)	0.0476 (15)
C(7)	0.4122 (3)	-0.1529 (3)	0.2943 (3)	0.0388 (11)
C(8)	0.3545 (5)	-0.1875 (3)	0.3902 (3)	0.0376 (12)
N(1)	0.3390 (2)	-0.0734 (2)	0.2179 (2)	0.0290 (8)
N(2)	0.1475 (2)	-0.0223 (2)	0.2613 (2)	0.0246 (7)
N(3)	0.1995 (2)	0.1382 (2)	0.4063 (2)	0.0331 (9)
N(4)	0.2734 (2)	0.1480 (2)	0.1882 (2)	0.0324 (9)
N(5)	0.3108 (2)	-0.0793 (2)	0.4364 (2)	0.0294 (8)
O(1)	0.3235 (2)	0.4060 (2)	0.1538 (2)	0.0497 (10)
$\mathrm{O}(2)$	0.1896 (3)	0.5447 (3)	0.1646 (3)	0.0720 (13)
O(3)	0.2140 (3)	0.3923 (3)	0.2948 (3)	0.0723 (14)
$\mathrm{O}(4)$	0.3387 (3)	0.5424 (3)	0.3033 (3)	0.0897 (14)
$\mathrm{O}(5)$	-0.0937 (2)	0.2930 (2)	0.0432 (2)	0.0485 (9)
O(6)	0.0597 (2)	0.1806 (3)	0.0407 (3)	0.0584 (11)
O(7)	0.0141 (3)	0.2425 (3)	0.2125 (2)	0.0701 (12)
O(8)	-0.0894 (3)	0.1004 (3)	0.1045 (3)	0.0675 (12)

Table 2. Selected geometric parameters $\left(\AA \AA^{\circ}\right)$

$\mathrm{Co}-\mathrm{Cl}(1)$	2.2725 (9)	$\mathrm{N}(3)-\mathrm{C}(4)$	1.486 (5)
$\mathrm{Co}-\mathrm{N}(1)$	1.954 (3)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.512 (6)
$\mathrm{Co}-\mathrm{N}(2)$	1.863 (2)	$\mathrm{N}(4)-\mathrm{C}(6)$	1.488 (5)
$\mathrm{Co}-\mathrm{N}(3)$	1.968 (3)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.505 (6)
$\mathrm{Co}-\mathrm{N}(4)$	1.962 (3)	$\mathrm{N}(5)-\mathrm{C}(8)$	1.493 (4)
$\mathrm{Co}-\mathrm{N}(5)$	1.971 (3)	$\mathrm{Cl}(2)-\mathrm{O}(1)$	1.452 (3)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.516 (4)	$\mathrm{Cl}(2)-\mathrm{O}(2)$	1.421 (3)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.492 (5)	$\mathrm{Cl}(2)-\mathrm{O}(3)$	1.422 (4)
$\mathrm{N}(1)-\mathrm{C}(7)$	1.502 (4)	$\mathrm{Cl}(2)-\mathrm{O}(4)$	1.418 (4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.515 (5)	$\mathrm{Cl}(3)-\mathrm{O}(5)$	1.414 (3)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.450 (5)	$\mathrm{Cl}(3)-\mathrm{O}(6)$	1.441 (3)
$\mathrm{N}(2)-\mathrm{C}(3)$	1.268 (5)	$\mathrm{Cl}(3)-\mathrm{O}(7)$	1.431 (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.486 (5)	$\mathrm{Cl}(3)-\mathrm{O}(8)$	1.419 (3)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(1)$	98.8 (1)	$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(3)$	118.7 (2)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(2)$	174.6 (1)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$	124.7 (3)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(3)$	91.8 (1)	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	116.0 (3)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(4)$	87.7 (1)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(3)$	108.2 (3)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(5)$	88.6 (1)	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(4)$	109.3 (2)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	86.4 (1)	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	107.6 (3)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	169.4 (1)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(4)$	108.8 (3)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(4)$	85.8 (1)	$\mathrm{Co}-\mathrm{N}(4)-\mathrm{C}(6)$	111.1 (2)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(5)$	86.9 (1)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	107.5 (3)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(3)$	83.1 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(5)$	108.4 (3)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(4)$	91.3 (1)	$\mathrm{Co}-\mathrm{N}(5)-\mathrm{C}(8)$	109.5 (2)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(5)$	93.1 (1)	$\mathrm{O}(1)-\mathrm{Cl}(2)-\mathrm{O}(2)$	108.5 (2)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(4)$	95.6 (1)	$\mathrm{O}(1)-\mathrm{Cl}(2)-\mathrm{O}(3)$	109.5 (2)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(5)$	92.6 (1)	$\mathrm{O}(1)-\mathrm{Cl}(2)-\mathrm{O}(4)$	110.5 (2)
$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(5)$	171.1 (1)	$\mathrm{O}(2)-\mathrm{Cl}(2)-\mathrm{O}(3)$	109.8 (2)
Co-N(1)-C(1)	110.2 (2)	$\mathrm{O}(2)-\mathrm{Cl}(2)-\mathrm{O}(4)$	109.1 (2)
Co-N(1)-C(5)	106.1 (2)	$\mathrm{O}(3)-\mathrm{Cl}(2)-\mathrm{O}(4)$	109.4 (2)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{C}(7)$	106.2 (2)	$\mathrm{O}(5)-\mathrm{Cl}(3)-\mathrm{O}(6)$	109.1 (2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	111.2 (3)	$\mathrm{O}(5)-\mathrm{Cl}(3)-\mathrm{O}(7)$	110.4 (2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(7)$	109.4 (3)	$\mathrm{O}(5)-\mathrm{Cl}(3)-\mathrm{O}(8)$	109.6 (2)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(7)$	113.5 (3)	$\mathrm{O}(6)-\mathrm{Cl}(3)-\mathrm{O}(7)$	108.5 (2)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112.2 (3)	$\mathrm{O}(6)-\mathrm{Cl}(3)-\mathrm{O}(8)$	108.6 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	108.2 (3)	$\mathrm{O}(7)-\mathrm{Cl}(3)-\mathrm{O}(8)$	110.6 (2)
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{C}(2)$	116.5 (2)		

Intensity data were processed as described previously (Fallon \& Gatehouse, 1980). The atomic scattering factors for neutral atoms were corrected for anomalous dispersion by using values from Ibers \& Hamilton (1984). All calculations were performed on a VAX 11/780 computer. The program used for
least-squares refinement was SHELX76 (Sheldrick, 1976). The structure was solved by direct methods. Refinement was by full-matrix least-squares employing anisotropic displacement parameters for all non- H atoms and a single isotropic displacement parameter for H atoms positioned in geometrically idealized positions, which refined to 0.043 (2) \AA^{2} ($\mathrm{C}-\mathrm{H} 0.96$, $\mathrm{N}-\mathrm{H} 0.90 \AA$).

We thank the Australian Research Council for financial support.

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: OH 1069). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Buckingham, D. A., Cresswell, P. J. \& Sargeson, A. M. (1975). Inorg. Chem. 14, 1485-1490.
Englelhardt, L. M., Gainsford, A. R., Gainsford, G. J., Golding, B. T., Harrowfield, J. MacB., Herlt, A. J., Sargeson, A. M. \& White, A. H. (1988). Inorg. Chem. 27, 4551-4563.
Fallon, G. D. \& Gatehouse, B. M. (1980). J. Solid State Chem. 34, 193.

Gatehouse, B. M., McLachlan, G., Martin, L. L., Martin, R. L. \& Spiccia, L. (1991). Aust. J. Chem. 44, 351-359.
Gatehouse, B. M., Martin, R. L., McLachlan, G., Platts, S. N. \& Spiccia, L. (1992). Acta Cryst. C48, 271-274.
Golding, B. T., Harrowfield, J. MacB. \& Sargeson, A. M. (1974). J. Am. Chem. Soc. 96, 3003-3004.

Ibers, J. A. \& Hamilton, W. C. (1984). International Tables for X-ray Cristallography, Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Maxwell. I. E. (1971). Inorg. Chem. 10, 1782-1788.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. SI-S19.
Sheldrick. G. M. (1976). SHELX76. Program for Cristal Siructure Determination. Univ. of Cambridge. England.
Tucker. P. A. (1979). Acta Cr:st. B35. 67-71.

Acta Cryst. (1995). C51, 50-52

Chloro((1-methyl-2-imidazolyl- κN^{3}-methyl)-bis(2-pyridyl- κN-methyl)amine- κN copper(II) Hexafluorophosphate, $\left[\mathrm{CuCl}\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{5}\right)\right] \mathrm{PF}_{6}$

Jianping Wang, Mark S. Mashuta,
John F. Richardson and Robert M. Buchanan*
Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA
(Received 16 April 1994; accepted 7 June 1994)

Abstract

The coordination polyhedron of the Cu^{11} ion in the title compound is best described as a distorted trigo-

